Nonlocal Patch-based Image Inpainting through Minimization of a Sparsity Promoting Nonconvex Functional

نویسندگان

  • ERNIE ESSER
  • XIAOQUN ZHANG
چکیده

We propose a convex model for nonlocal image inpainting that fills in missing or damaged areas with different convex combinations of available image patches. The visual quality of inpainted solutions is much better when patches are copied instead of averaged, and we show how this can be achieved by adding a nonconvex sparsity promoting penalty. To promote sparsity of a variable that is constrained to be nonnegative and sum to one, we add a concave quadratic function to an otherwise convex objective. Standard difference of convex programming can be used to find critical points of this nonconvex problem, but it requires solving a sequence of expensive convex problems. We argue that a faster and more practical approach is to use a modified primal dual hybrid gradient method, which is an efficient method for minimizing large non-differentiable convex functions. Although its convergence for nonconvex problems is only empirical, it shows promise as a practical method for minimizing large non-differentiable nonconvex functions for which the nonconvex component is smooth and can be made strongly convex by the addition of a quadratic. In particular, we show how to apply this strategy to a nonlocal patch-based image inpainting problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconvex Weighted ℓp Minimization Based Group Sparse Representation Framework for Image Denoising

Nonlocal image representation or group sparsity has attracted considerable interest in various low-level vision tasks and has led to several state-of-the-art image denoising techniques, such as BM3D, LSSC. In the past, convex optimization with sparsity-promoting convex regularization was usually regarded as a standard scheme for estimating sparse signals in noise. However, using convex regulari...

متن کامل

Improving Exemplar-based Image Completion methods using Selecting the Optimal Patch

Image completion is one of the subjects in image and video processing which deals with restoration of and filling in damaged regions of images using correct regions. Exemplar-based image completion methods give more pleasant results than pixel-based approaches. In this paper, a new algorithm is proposed to find the most suitable patch in order to fill in the damaged parts. This patch selection ...

متن کامل

Weighted Schatten $p$-Norm Minimization for Image Denoising with Local and Nonlocal Regularization

This paper presents a patch-wise low-rank based image denoising method with constrained variational model involving local and nonlocal regularization. On one hand, recent patch-wise methods can be represented as a low-rank matrix approximation problem whose convex relaxation usually depends on nuclear norm minimization (NNM). Here, we extend the NNM to the nonconvex schatten p-norm minimization...

متن کامل

Novel Object Removal in Video Using Patch Sparsity

The process of repairing the damaged area or to remove the specific areas in a video is known as video inpainting. To deal with this kind of problems, not only a robust image inpainting algorithm is used, but also a technique of structure generation is used to fill-in the missing parts of a video sequence taken from a static camera. Most of the automatic techniques of video inpainting are compu...

متن کامل

Image reconstruction with locally adaptive sparsity and nonlocal robust regularization

Sparse representation based modeling has been successfully used in many image-related inverse problems such as deblurring, super-resolution and compressive sensing. The heart of sparse representations lies on how to find a space (spanned by a dictionary of atoms) where the local image patch exhibits high sparsity and how to determine the image local sparsity. To identify the locally varying spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013